Papers

54. Extending the Conversion Rate of Sulfur Infiltrated into Microporous Carbon in Carbonate Electrolytes

Dr. María L. Para, Dr. Cecilia A. Calderón, Dr. Sara Drvarič Talian, Dr. Florent Fischer, Dr. Guillermina L. Luque, Prof. Daniel E. Barraco, Prof. Ezequiel P. M. Leiva, Prof. Robert Dominko
Batteries & Supercaps (2022)
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/batt.202100374

 

53. Composite polymer electrolyte with high inorganic additive contents to enable metallic lithium anode

Julia Amici, Cecilia Andrea Calderón, Daniele Versaci, Guillermina Luque, Daniel Barraco,  Ezequiel Leiva, Carlotta Francia, Silvia Bodoardo
Electrochimica Acta (2022)
https://www.sciencedirect.com/science/article/abs/pii/S0013468621020557?via%3Dihub

 

52. Glyphosate and glufosinate ammonium, herbicides commonly used on genetically modified crops, and their interaction with microplastics: Ecotoxicity in anuran tadpoles

R. C. Lajmanovich, A. M. Attademo, G. Lener, A. P. Cuzziol Boccioni, P. M. Peltzer, C. S. Martinuzzi, L. D. Demonte & M. R. Repetti
Science of The Total Environment (2022)
→https://www.sciencedirect.com/science/article/abs/pii/S0048969721052542?via%3Dihub

51. On how interactions influence kinetic limitations in alkali-ion batteries. Application to Li-ion intercalation into graphite through voltammetric experiments.

Edgardo M Gavilán-Arriazu Daniel E Barraco Ezequiel Pedro Marcos Leiva.
Journal of Solid State Electrochemistry, 25 (2021) 2793-2806
→https://doi.org/10.1007/s10008-021-05079-6

 

50. On the role of oxidized graphene interfaces in lithium sulfur batteries: Thermodynamic and kinetic aspects using density functional theory

P. Vélez, M. Rojas, J. Velasco, M. Para, D. Barraco, E. Leiva & G. Luque  
Applied Surface Science (2021)
→https://doi.org/10.1016/j.apsusc.2021.149358

 

49. Activated carbon from pyrolysis of peanut shells as cathode for lithium-sulfur batteries

M. Rojas, M. Nieva Lobos, M. Para , M. Gonzales Quijón , O. Camara, D. Barraco, E. Moyano & G. Luque 
 Biomass and Bioenergy (2021)
→https://doi.org/10.1016/j.biombioe.2021.105971

 

48. Characterization of amorphous Li x Si structures from ReaxFF via accelerated exploration of local minima

 F. Fernandez, A. Paz, M. Otero, D. Barraco & E. Leiva
Physical Chemistry Chemical Physics (2021)
→https://pubs.rsc.org/en/content/articlelanding/2021/CP/D1CP02216D

 

47. Synthesis and characterization of porous carbon materials modified with NIFe 2 O 4 for applications in lithium-ion batteries.

Raviolo, S. Amiune, N. Carraro, P. Luque, G. Eimer, G. Sapag, K. Oliva, M.
Microscopy & Microanalysis, 26 (2020) 165-166
→https://doi.org/10.1017/S143192762000104X

 

46. Numerical simulations of cyclic voltammetry for lithium-ion intercalation in nanosized systems: finiteness of diffusion versus electrode kinetics

Gavilan-Arriazu, M. Mercer, M. Pinto, O. Oviedo, O. Barraco, D. Hoster, H. Leiva, E.
Journal of Solid State Electrochemistry, 24 (2020) 3279-3287
→https://doi.org/10.1007/s10008-020-04717-9

45. Improving the polysulfide barrier by efficient carbon nanofibers coating on separator/cathode for Li-S batteries

F. J. García-Soriano, M. L. Para, G. L. Luque, D. Barraco, E. P. M. Leiva & G. Lener
J. Solid State Electrochem. (2020)
→https://doi.org/10.1007/s10008-020-04749-1

 

44. A mapping of the physical and electrochemical properties of composite Lithium-ion batteries anodes made from graphite, Sn and Si

S. Smrekar, M. V. Bracamonte, E. N. Primo, G. L. Luque, J. Thomas, D. E. Barraco, E. Leiva.
Batteries & Supercaps, 3 (2020) 1248-1256
→https://doi.org/10.1002/batt.202000096

43. Ab initio calculations of lithium titanates related to anodes of lithium-ion batteries

S. Amaya-Roncancio, L. Reinaudi, S. Chauque, F. Y. Oliva, O. R. Cámara, E. P.M. Leiva b, M. C. Gimenez.
Journal of Physics and Chemistry of Solids, 141 (2020) 109405
→https://doi.org/10.1016/j.jpcs.2020.109405

 

42. Enhanced energy storage of alkali (Li, Na) titanates by sucrose carbonization

S. Chauque, F.Y. Oliva, G. Lener, O. R. Cámara.
Journal of Solid State Electrochemistry, 24 (2020) 1017
→https://doi.org/10.1007/s10008-020-04567-5

 

41. Standardless determination of nanometric thicknesses in stratified samples by electron probe microanalysis

G.D. Pereyra, F.Y. Oliva, N. Budini, G. Risso, P.D. Pérez, S. Suárez, J.C. Trincavelli.
Spectrochimica Acta Part B, 171 (2020) 105932
→https://doi.org/10.1016/j.sab.2020.105932

 

40. Lithium Metal Protection by a Cross-Linked Polymer Ionic Liquid and Its Application in Lithium Battery

C. Calderón, Al. Vizintin, J. Bobnar, D. E. Barraco, E. Leiva, Ar. Visintin, S. Fantini, F. Fischer, and R. Dominko.
ACS Appl. Energy Mater. Just Accepted Manuscript (2020)
→https://doi.org/10.1021/acsaem.9b02309

 

39. Ab-initio calculations of Lithium titanates related to anodes of Lithium-ion bateries

S. Amaya-Roncancio, L. Reinaudi, S. Chauque, F. Oliva, O. Cámara, E. P. M. Leiva and M. C. Gimenez*.
Journal of Physics and Chemistry of Solids, 141 (2020) 109405.
→https://doi.org/10.1016/j.jpcs.2020.109405

 

38. Monte Carlo simulations and Cluster-exact Approximation applied to H/Cu(100), H/Ag(100) and O/Cu(100) systems

F. O. Sanchez-Varretti, E. V. Gómez, L. B. Avalle, F. M. Bulnes, M. C. Gimenez and A. J. Ramirez-Pastor.
Applied Surface Science, 500 (2020) 144034
→https://doi.org/10.1016/j.apsusc.2019.144034

 

37. Transitions of lithium occupation in graphite: A physically informed model in the dilute lithium occupation limit supported by electrochemical and thermodynamic measurements

M.P. Mercer, M. Otero, M. Ferrer-Huerta, A. Sigal, D.E. Barraco, H.E. Hoster, E.P.M. Leiva
Electrochimica Acta, 324 (2019) 134774
→https://doi.org/10.1016/j.electacta.2019.134774

 

36. Study of the spontaneous oxidation of sodium in air by EPMA and Monte Carlo simulations

F.Y. Oliva, E.P.M. Leiva, G. Lener, D.E. Barraco, J.C. Trincavelli
Applied Surface Science, 480 (2019) 1093–1099
→https://doi.org/10.1016/j.apsusc.2019.02.181

 

35. Percolation of hydrogen atoms adsorbed on Cu(100) surfaces: DFT, Monte Carlo and finite size scaling techniques

E. del Valle Gomez, L.B. Avalle, M.C. Gimenez
International Journal of Hydrogen Energy, 44 (2019) 7083-7094
→https://doi.org/10.1016/j.ijhydene.2019.01.213

 

34. Modeling of substitutionally modified graphene structures to prevent the shuttle mechanism in lithium-sulfur batteries

P. Velez, M.L. Para, G.L. Luque, D. Barraco, E.P.M. Leiva
Electrochimica Acta, 309 (2019) 402-414
→https://doi.org/10.1016/j.electacta.2019.04.062

 

33. Mechanochemically synthesized pyrite and its electrochemical behavior as cathode for lithium batteries

E.N. Primo, M.V. Bracamonte, G.L. Luque, P.G. Bercoff, E.P.M. Leiva, D.E. Barraco
Journal of Solid State Electrochemistry, 23 (2019) 6, 1929–1938
→https://doi.org/10.1007/s10008-019-04294-6

 

32. Impact of alginate and fluoroethylene carbonate on the electrochemical performance of SiO – SnCoC anode for lithium-ion batteries

G.L. Luque,Y. Li, X. Zeng, X. Luo, E.P.M. Leiva, Z. Chen, K. Amine
Journal of Solid State Electrochemistry, 23 (2019) 397–405
→https://doi.org/10.1007/s10008-018-4145-2

 

31. Capacity fading model for a solid electrolyte interface with surface growth

E.M. Perassi, E.P.M. Leiva
Electrochimica Acta, 308 (2019) 418-425
→https://doi.org/10.1016/j.electacta.2019.03.202

 

30. Use of poly[ionic liquid] as a conductive binder in lithium ion batteries

S. Chauque, F.Y. Oliva, O.R. Cámara, R.M. Torresi
Journal of Solid State Electrochemistry, 22 (2018) 3589 – 3596
→https://doi.org/10.1007/s10008-018-4078-9

 

29. The kinetic origin of the Daumas-Hérold model for the Li-ion/graphite intercalation system

E.M. Gavilán-Arriazu, O.A. Pinto, B.A. López de Mishima, D.E. Barraco, O.A. Oviedo, E.P.M. Leiva
Electrochemistry Communications, 93 (2018) 133–137
→https://doi.org/10.1016/j.elecom.2018.07.004

 

28. On the effect of the carbonaceous substrate in the nucleation of Sn nanoparticles for Li-ion anodes: experiments and first principles calculations

S. Smrekar, M.E. Zoloff Michoff, J.E. Thomas, C.A. Calderón, L.M. Farigliano, A. Visintin, E.P.M. Leiva, D.E. Barraco
Journal of Solid State Electrochemistry, 22 (2018) 1721
→https://doi.org/10.1007/s10008-017-3859-x

 

27. Grand Canonical Monte Carlo Study of Li Intercalation into Graphite

E.M. Gavilán-Arriazu, O.A. Pinto, B.A. López de Mishima, E.P.M. Leiva, O.A. Oviedo
Journal of The Electrochemical Society, 165 (2018) A2019-A2025
→https://doi.org/10.1149/2.1211809jes

 

26. Energetics of silica lithiation and its applications to lithium ion batteries

G. Lener, M. Otero, D.E. Barraco, E.P.M. Leiva
Electrochimica Acta, 259 (2018) 1053-1058
→https://doi.org/10.1016/j.electacta.2017.10.126

 

25. Design-Considerations regarding SiliconGraphite  and TinGraphite Composite Electrodes for Lithium-Ion Batteries

M. Otero, C. Heim, E.P.M. Leiva, N. Wagner, A. Friedrich
Scientific Reports, 8 (2018) 15851
→https://doi.org/10.1038/s41598-018-33405-y

 

24. A silica/carbon composite as anode for lithium-ion batteries with a large rate capability: Experiment and theoretical considerations

G. Lener, A.A. Garcia-Blanco, O. Furlong, M. Nazzarro, K. Sapag, D.E. Barraco, E.P.M. Leiva
Electrochimica Acta, 279 (2018) 289-300
→https://doi.org/10.1016/j.electacta.2018.05.050

 

23. Statistical mechanical modeling of the transition Stage II-Stage I of Li-ion storage in graphite. A priori vs induced heterogeneity

M. Otero,  A. Sigal, E. M. Perassi, D. Barraco, E.P.M. Leiva.
Electrochimica Acta, 245 (2017) 569-574
→http://dx.doi.org/doi:10.1016/j.electacta.2017.05.128

 

22. Shedding Light on the Entropy Change Found for the Transition Stage II→Stage I of Li-Ion Storage in Graphite

P. M. Leiva, E. Perassi, and D. Barraco.
Journal of The Electrochemical Society, 164 (2017) 6154-6157 
→https://doi.org/10.1149/2.0231701jes

 

21. Lithium titanate as anode material for lithium ion batteries: Synthesis, post- treatment and its electrochemical response

S. Chauque, F.Y. Oliva, A. Visintin, D. Barraco, E.P.M. Leiva, O.R. Cámara
Journal of Electroanalytical Chemistry, 799 (2017) 142-155
→https://doi.org/10.1016/j.jelechem.2017.05.052

 

20. Lithium dual uptake anode materials: crystalline Fe3O4 nanoparticles supported over graphite for lithium-ion batteries

M. Victoria Bracamonte, Emiliano N. Primo, Guillermina L. Luque, Lisandro Venosta, Paula G. Bercoff, Daniel E. Barraco
Electrochimica Acta, 258 (2017) 192-199
→https://doi.org/10.1016/j.electacta.2017.10.034

 

19. Intercalation stage dependence of core electronic excitations in Li-intercalated graphite from inelastic X-ray scattering

G. E. Stutz,  M. Otero, S. A. Ceppi, C. B. Robledo, G. Luque, E. Leiva, and D. E. Barraco Díaz
Appl. Phys. Lett., 110  (2017) 253901
→https://doi.org/10.1063/1.4986922

 

18. Electrochemical comparison of LiFePO4 synthesized by a solid-state method using either microwave heating or a tube furnace

Cecilia A. Calderón, Jorge E. Thomas, German Lener, Daniel E. Barraco, Arnaldo Visintin
Journal of Applied Electrochemistry, 47-10 (2017) 1179–1188
→https://doi.org/10.1007/s10800-017-1111-0

 

17. DFT study of adsorption and diffusion of atomic hydrogen on metal surfaces

Elizabeth del V.Gómez, Sebastián Amaya-Roncancio, Lucía B.Avalle, Daniel H.Linares, M. Cecilia Gimenez 
Applied Surface Science, 420 (2017) 1-8
→https://doi.org/10.1016/j.apsusc.2017.05.032

 

16. Criticality of the phase transition on stage two in a lattice-gas model of a graphite anode in a lithium-ion battery

M. Gavilán Arriazu, B. A. López de Mishima, O. A. Oviedo, E. P. M. Leiva and O. A. Pinto
Phys. Chem. Chem. Phys. 19 (2017) 23138
→https://doi.org/10.1039/c7cp04253a

 

15. Communication—Large Electron-Hole Diffusion Lengths in Methylammonium Lead Triiodide Perovskite Films Prepared by an Electrochemical-Chemical Approach

Lorena Macor, Agustín Sigal, Thomas Dittrich, Jorg Rappich,  Luis Otero and Miguel Gervaldo
ECS Journal of Solid State Science and Technology, 6 (2017) 819-821 
→https://doi.org/10.1149/2.0181712jss

 

14. New kinetic insight into the spontaneous oxidation process of lithium in air by EPMA

Manuel Otero, German Lener, Jorge Trincavelli, Daniel Barraco, Marcelo Sandro Nazzarro, Octavio Furlong, Ezequiel Pedro Marcos Leiva
Applied Surface Science, 383 (2016) 64–70
→https://doi.org/10.1016/j.apsusc.2016.04.060

 

13. First-Principles studies of silicon underpotential deposition on defective graphene and its relevance for lithium-ion battery materials

Laura Urquiza, Manuel Otero, Guillermina L. Luque, Daniel Barraco, Ezequiel P.M. Leiva
Electrochimica Acta, 208 (2016) 92-101
→https://doi.org/10.1016/j.electacta.2016.05.001

 

12. A theoretical model to determine intercalation entropy and enthalpy: Application to lithium/graphite

Eduardo M. Perassi, Ezequiel P.M. Leiva 
Electrochemistry Communications, 65 (2016) 48-52
→https://doi.org/10.1016/j.elecom.2016.02.003

 

11. Wind and solar hydrogen for the potential production of ammonia in the state of Ceara e Brazil

N.B. Esteves, A. Sigal, E.P.M. Leiva, C.R. Rodríguez, F.S.A. Cavalcante, L.C. de Lima
International Journal of Hydrogen Energy, 40 (2015) 9917-9923
→https://doi.org/10.1016/j.ijhydene.2015.06.044 

 

10. Study of the natural resource and economic feasibility of the production and delivery of wind hydrogen in the province of Cordoba, Argentina

A. Sigal, M. Cioccale, C.R. Rodrí́guez, E.P.M. Leiva
International Journal of Hydrogen Energy, 40 (2015) 4413-4425
→https://doi.org/10.1016/j.ijhydene.2015.01.149

 

9. Photoinduced charge separation in organic-inorganic hybrid system: C60-containing electropolymer / CdSe-quantum dots

Manuel Otero, Thomas Dittrich, Jörg Rappich, Daniel A. Heredia, Fernando Fungo, Edgardo Durantini, Luis Otero
Electrochimica Acta, 173 (2015) 316-322
→https://doi.org/10.1016/j.electacta.2015.05.029

 

8. First-principles studies of lithium storage in reduced graphite oxide

C.B. Robledo, M. Otero, G. Luque, O. Cámara, D. Barraco, M.I. Rojas, E.P.M. Leiva
Electrochimica Acta, 140 (2014) 232-237
→https://doi.org/10.1016/j.electacta.2014.07.013 

 

7. First-principles studies concerning optimization of hydrogen storage in nanoporous reduced graphite oxide

C.B. Robledo, M.I. Rojas O. Cámara, E.P.M. Leiva
International Journal of Hydrogen Energy, 39 (2014) 4396-4403
→https://doi.org/10.1016/j.ijhydene.2013.12.206

 

6. Comparative Study of Different Alkali (Na, Li) Titanate Substrates as Active Materials for Anodes of Lithium – Ion Batteries

S. Chauque, C. B. Robledo, E. P. M. Leiva, F. Y. Oliva, O. R. Cámara
ECS Transactions, 63 (2014) 113-128
→https://doi.org/10.1149/06301.0113ecst

 

5. Assessment of the potential for hydrogen production from renewable resources in Argentina

A. Sigal, E.P.M. Leiva, C.R. Rodríguez
International Journal of Hydrogen Energy, 39 (2014) 8204-8214
→https://doi.org/10.1016/j.ijhydene.2014.03.157 

 

4. An experimental and theoretical approach on the effect of presence of oxygen in milled graphite as lithium storage material

C.B. Robledo, J.E. Thomas, G. Luque, E.P.M. Leiva, O. Cámara, D. Barraco, A. Visintin
Electrochimica Acta, 140 (2014) 160-167
→https://doi.org/10.1016/j.electacta.2014.05.117

 

3. A new model for the prediction of oxygen interference in hydrogen storage systems

A. Sigal, M. Villarreal, M.I. Rojas, E.P.M. Leiva
International Journal of Hydrogen Energy, 39 (2014) 5899-5905
→https://doi.org/10.1016/j.ijhydene.2014.01.175

 

2. Is Hydrogen Storage Possible in Metal-Doped Graphite 2D Systems in Conditions Found on Earth?

A. Sigal, M. I. Rojas and E. P. M. Leiva
Phys. Rev. Lett., 107 (2011) 158701
→https://doi.org/10.1103/PhysRevLett.107.158701

 

1. Interferents for hydrogen storage on a graphene sheet decorated with nickel: A DFT study

A. Sigal, M.I. Rojas, E.P.M. Leiva
International Journal of Hydrogen Energy, 36 (2011) 3537-3546
→https://doi.org/10.1016/j.ijhydene.2010.12.024